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Abstract

In this paper, we �nd an example for a periodic heteroclinic chain
in Bianchi V I

∗

−1/9 that allows Takens Linearization at all base points.
It turns out to be a "18-cycle�, i.e. involving a heteroclinic chain of
18 di�erent base points at the Kasner circle. We then show that the
Combined Linear Local Passage at the 18-cycle is a contraction. This
quali�es the 18-cycle as a candidate for proving the �rst rigorous con-
vergence theorem in Bianchi V I

∗

−1/9.
We proceed with an outlook on how to proceed further in studying

Bianchi cosmologies, and also discuss directions for future research in
inhomogeneous (PDE-) cosmological models. This puts our results in
a broader perspective. The appendix contains symbolic and numerical
computations done by Mathematica for examples discussed throughout
the text.
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CHAPTER 1

Bianchi Spacetimes - Existing Results, Challenges

and Techniques

1. The Equations of Wainwright and Hsu

In the paper [59] by Wainwright and Hsu, a formulation of the
Einstein Equations for Bianchi models is presented that has several
advantages, one of them beeing that it contains all models of Bianchi
class A. Here are the equations, which are used throughout this disser-
tation:

(1)

N ′1 = (q − 4Σ+)N1,

N ′2 = (q + 2Σ+ + 2
√

3Σ−)N2,

N ′3 = (q + 2Σ+ − 2
√

3Σ−)N3,
Σ′+ = (q − 2)Σ+ − 3S+,
Σ′− = (q − 2)Σ− − 3S−.

with constraint

(2) Ω = 1− Σ2
+ − Σ2

− −K
and abbreviations

(3)

q = 2
(
Σ2

+ + Σ2
−
)

+ 1
2
(3γ − 2)Ω,

K = 3
4

(
N2

1 +N2
2 +N2

3 − 2 (N1N2 +N2N3 +N3N1)
)
,

S+ = 1
2

(
(N2 −N3)2 −N1 (2N1 −N2 −N3)

)
,

S− = 1
2

√
3 (N3 −N2) (N1 −N2 −N3) .

The �xed parameter γ is related to the choice of matter model (e.g.
γ = 1 represents dust, whereas γ = 4/3 represents radiation).

The properties of equations above have been studied intensively,
for a recent survey see [17]. The main goal are rigorous results on
the correspondence of iterations of the so-called "Kasner map" f to
the dynamics of nearby trajectories to the Bianchi system (1) with
reversed time, i.e. in the α-limit t → −∞. We will introduce the
necessary background in the rest of this section.
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Bianchi Class N1 N2 N3

I 0 0 0
II + 0 0
VI0 0 + −
VII0 0 + +
VIII − + +
IX + + +

1.1. Vacuum Models of Bianchi Class A. From now on, we
will restrict ourselves to the vacuum case Ω = 0 . This yields a 4-
dimensional model, as we have �ve variables and one constraint:

Definition 1.1. (Phase Space of the Vacuum Wainwright-Hsu ODEs)

W = {(N1, N2, N3,Σ+,Σ−) | 0 = 1− Σ2
+ − Σ2

− −K}

As we are interested in the dynamics of the Bianchi system (1) with
reversed time, i.e. in the α-limit t → −∞, we will we denote by XW

the vector �eld corresponding to this time direction, for use in later
chapters1. This means XW stands for the vector �eld corresponding to
the right side of (1), multiplied by −1.

When we look at those equations, we observe that if N1 = N2 =
N3 = 0, the vector �eld is zero, as K = 0 and q = 2 in this case.
We denote by K = {N1 = N2 = N3 = 0, Ω = 0} the resulting circle
of equilibria: we obtain a circle because the constraint (2) reduces to
Σ2

+ +Σ2
− = 1. It is called the "Kasner circle", because the points p ∈ K

represent the Kasner solution of the Einstein Equations discussed in
section ??.

In the classi�cation of spatially homogenous models (based on the
classi�cation of 3-dimensional Lie-Algebras by Bianchi [5]), these are
of Bianchi class I. One advantage of the Wainwright-Hsu equations is
that they contain all models of Bianchi class A, with the signs of the
Ni determining the type of Bianchi model, see the table above.

If we allow one of the Ni to be non-zero, the resulting half ellipsoids
are called "Kasner caps": Ck = {Nk > 0, Nl = Nm = 0, Ω = 0} with
{k, l,m} = {1, 2, 3}. They consist of heteroclinic orbits to equilibria
on the Kasner circle and are of Bianchi class II. The projections of
the trajectories of Bianchi class-II vacuum solutions onto the Σ±-plane
yield straight lines connecting two points of the Kasner circle.

1in the paper by Béguin [2], the equations are presented directly with time
direction chosen towards the big bang, but we stick to the form of the equations
used in the classic reference [59], and also in [42, 27].
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These can be constructed geometrically in the following way: for
a point p ∈ K of the Kasner circle, identify the nearest corner of the
circumscribed triangle, and draw the resulting line as illustrated in the
picture below:

Σ+

Σ−

T1

T2

T3

Observe that this works for any p ∈ K except for the three points
where the Kasner circle touches the circumscribed triangle, which we
denote by T1, T2, T3 and refer to them as Taub points.

1.2. The Kasner Map. This leads to the de�nition of the so-
called Kasner map f : K → K. For each point p+ ∈ (K \ {T1, T2, T3})
there exists a Bianchi class-II vacuum heteroclinic orbit H(t) converg-
ing to p+ as t→∞. This orbit is unique up to re�ection (N1, N2, N3) 7→
(−N1,−N2,−N3). Its unique α-limit p− de�nes the image of p+ under
the Kasner map

(4) f(p+) := p−

Including the three �xed points, f(Tk) := Tk, this construction yields
a continuous map, f : K → K. In fact f is a non-uniformly expanding
map and its image f(K) is a double cover of K, which can be seen
directly from the geometric description given above.

For use in later chapters, let us denote by Hp,f(q) the heteroclinic
Bianchi-II-orbit from p to its image point under the Kasner map f(q)
and by HB =

⋃
p∈BHp,f(q) the set of all heterclinic Bianchi-II-orbits

connecting two basepoints in the set B ⊂ K.
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We will now introduce the so-called Kasner-parameter u, as it is
a convenient way to parametrize the Kasner circle. Let us divide the
Kasner circle into six sectors and label them as follows:

Σ+

Σ−

T1

T2

T3

Q1

Q2

Q3

2

5

13

4 6

The Kasner parameter ranges in [1,∞], where it holds that u =
∞ at the Taub point Ti and u = 1 at the points Qi shown in the
picture. So for each value of u, we get an equivalence class of six points
cooresponding to the p ∈ K in each sector of the Kasner circle (except
for the values u = ∞ and u = 1, where the equivalence class consists
only of three points). Expressed in u, the Kasner map has a very simple
form:

f(u) =

{
u− 1 u ∈ [2,∞]

1
u−1

u ∈ [1, 2]

In the picture below, the dynamics of the Kasner-map is shown: If
you start close to a Taub point (meaning that u is large compared to
1), there are �rst "bounces" around this Taub point as the value of u
is decreased by 1 in each step. Then, after the value of u has fallen
below 2, there is a "excursion" to a di�erent part of the Kasner circle:
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Σ+

Σ−

T1

T2

T3

There is also an interesting connection to the Kasner solution de-
scribed in section ??. Each sector of the Kasner circle corresponds to
a permutation of the Kasner expontents pi, which can be expressed in
the Kasner parameter u:

Σ+

Σ−

T1

T2

T3

Q1

Q2

Q3

(213)

(312)

(123)(231)

(321) (132)
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where sector (321) means e.g. that p3 < p2 < p1 which �xes the
formula for each of them. As an example, consider the sector 5 or (312)
(for details see [17], p.8):

p3 =
−u

1 + u+ u2

p1 =
(u+ 1)

1 + u+ u2

p2 =
u(u+ 1)

1 + u+ u2

We will need the formulas above, as they will allow us to express
the eigenvalues of the linearized vector �eld at points of the Kasner
circle in u, a key step for obtaining our results in the later chapters.

1.3. Eigenvalues in Terms of the Kasner Parameter u. When
we linearize the vector �eld corresponding to equations (1) at points of
the Kasner circle, we arrive at the following Matrix:


2− 4Σ+ 0 0 0 0

0 2 + 2Σ+ + 2
√

3Σ− 0 0 0

0 0 2 + 2Σ+ − 2
√

3Σ− 0 0
0 0 0 3(2− γ)Σ2

+ 3(2− γ)Σ+Σ−
0 0 0 3(2− γ)Σ+Σ− 3(2− γ)Σ2

−

 .

and we can compute the following eigenvalues to eigenvectors ∂N1 ,
∂N2 , ∂N3 tangential to the Bianchi class-II vacuum heteroclinics:

µ1 = 2− 4Σ+,

µ2 = 2 + 2Σ+ + 2
√

3Σ−,

µ3 = 2 + 2Σ+ − 2
√

3Σ−

In addition we have the trivial eigenvalue zero to the eigenvector
−Σ−∂Σ+ + Σ+∂Σ− tangential to the Kasner circle K. The �fth eigen-
value µΩ = 3(2−γ) > 0 corresponds to the eigenvector Σ+∂Σ+ +Σ−∂Σ−

transverse to the vacuum boundary {Ω = 0}.
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Now we use that it is possible to express the Σ+/−-variables in terms
of the Kasner exponents pi (see [17], p.7):

Σ+ = −3

2
p1 +

1

2

Σ− = −
√

3

2
(p1 + 2p2 − 1)

Thus, we arrive at the following formulas for the eigenvalues ex-
pressed in u:

(5) (λ1, λ2, λ3) =

(
−6u

1 + u+ u2
,

6(1 + u)

1 + u+ u2
,

6u(1 + u)

1 + u+ u2

)
As it holds that u ∈ [1,∞], we observe that at each point of the

Kasner circle, there is one negative and two positive eigenvalues. But
recall that we are interested in the time-direction t → −∞. The neg-
ative eigenvalue is unstable towards the past, while the two positive
eigenvalues are stable in backwards-time. This means that for our
vector �eld XW (which has the time-direction already reversed, see
beginning of section 1.1) there is one unstable eigenvalue λu and two
stable eigenvalues λs, λss, at a point of the Kasner circle. Away from
the Taub points it also holds that:

|λu| < |λs| < |λss|

Finally, also note that in Bianchi IX, the situation in di�erent sec-
tors of the Kasner-circle only di�ers by a permutation of those 3 for-
mulas for the eigenvalues. This makes it easy to examine the question
of resonances of the eigenvalues, which we are trying to exclude when
linearizing the vector �eld.

However, we will also deal with Bianchi V I
∗

−1/9 later, and there the
situation is more complicated as the formulas for the eigenvalues at
points on the Kasner circle do depend on the sector, so in order to
check for resonances, a lot of cases have to be considered. This will be
done in chapter 2. In the next section, we will introduce the equations
for Bianchi V I

∗

−1/9, which is of class B and not covered by the equations
of Wainwright and Hsu.
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2. Bianchi V I
∗

−1/9

We now present the equations for Bianchi V I
∗

−1/9, which is the
most general model in Bianchi class B, and has a crucial importance
for inhomogenous cosmologies (see e.g. [21]):

Σ
′

+ = (q − 2)Σ+ + 3Σ2
2 − 2N2

− − 6A2(6)

Σ
′

− = (q − 2)Σ− −
√

3Σ2
2 + 2

√
3Σ2
× − 2

√
3N2
− + 2

√
3A2(7)

Σ
′

× = (q − 2− 2
√

3Σ−)Σ× − 8N−A(8)

Σ
′

2 = (q − 2− 3Σ+ +
√

3Σ−)Σ2(9)

N
′

− = (q + 2Σ+ + 2
√

3Σ−)N− + 6Σ×A(10)

A
′
= (q + 2Σ+)A(11)

Abbreviations:

(12) q = 2Σ2 +
1

2
(3γ − 2)Ω

(13) Σ2 = Σ2
+ + Σ2

− + Σ2
2 + Σ2

×

Constraints:

(14) Ω = 1− Σ2 −N2
− − 4A2

(15) g = (Σ+ +
√

3Σ−)A− Σ×N− = 0

Auxilliary Equations:

(16) Ω
′
= [2q − (3γ − 2)]Ω

(17) g
′
= 2(q + Σ+ − 1)g
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Note that the auxilliary equations (21) and (22) follow from (11)−(16)
and show the invariance of Ω = 0 and g = 0, where Ω = 0 results in
the vacuum equations.

We de�ne the phase space for vacuum Bianchi V I
∗

−1/9 again by

requiring that the constraints (14) and (15) are satis�ed. This time, we
have six variables and two constraints, yielding again a 4-dimensional
state space for the Vacuum models, as in Bianchi IX before.

Definition 1.2. (Phase Space for Vacuum Bianchi V I
∗

−1/9)

B = {Σ+,Σ−,Σ×,Σ2, N−, A) | 0 = 1− Σ2 −N2
− − 4A2 and g = 0}

The equations have been analysed in [21], we give here only a very
brief overview about the similarities and di�erences of Bianchi V I∗− 1

9

compared to Bianchi IX that are relevant for our own research (see
chapter 2).

When we look at the equations, we observe there is also a Kasner
circle of �xed points: K = {Σ× = Σ2 = N− = A = 0}, leading again to
Σ2

+ + Σ2
− = 1. Similar to Bianchi IX, we can de�ne caps of heteroclinic

orbits connecting points of K, but Bianchi V I∗− 1
9

is less symmetric than

Bianchi IX. The transitions can be illustrated as follows:

N− Σ× Σ2

We have the following caps of heteroclinic orbits:

• CN− = {Σ× = Σ2 = A = 0} , which represent transitions in
the variable N−, i.e. curvature transitions. This means the
Kasner parameter u changes according to the Kasner map as
explained in section 1.2 for Bianchi IX.
• CΣ× = {Σ2 = N− = A = 0}, which represent transitions
in the variable Σx, i.e. a frame transition. This means the
Kasner parameter u is not changed by the transition, it rather
connects two points of K that are in the same equivalence class
with the same u in di�erent sectors

9



• CΣ2 = {Σ× = N− = A = 0} which represent transitions in the
variable in the variable Σ2, also a frame transition.

In addition to the traditional curvature transition in the variable
N− similar to those that also appear in Bianchi class A, we also observe
frame transitions of two types, for the variables Σ× and Σ2. The fact
that the frame transition do not change u can be seen from the fact
that the projections of the heteroclinic orbits on the (Σ+,Σ−)-plane
are parallel lines, and the (inverse) distance to the Taub points (which
is one way to interpret u) stays the same after the transition.

Σ+

Σ−

T1

T2

T3

Similar to what we did in Bianchi IX, we will also �nd expressions
for the eigenvalues of the transition-variables in terms of the Kasner
parameter u. This will be done in chapter 2.

10



3. Existing Results in Bianchi IX and Di�culties in Bianchi
B

Historically, the chaotic oscillations in Bianchi models have �rst
been observed in the Bianchi IX model, see [29, 3, 4]. It is also known
under the name "Mixmaster", a term coined by Misner [34]. The �rst
rigorous theorem on the ancient dynamics in Bianchi IX was proved by
Ringström [42], based on earlier results by Rendall [39]. For a recent
survey on the "Facts and Beliefs" concerning the Mixmaster model, see
[17].

One important research question is relating properties of the Kasner
map (which is known to be chaotic, see e.g. the chapter 11 in the book
[58]) to the real dynamics in Bianchi models. This can be seen as mak-
ing the BKL-conjecture rigorous for spatially homogenous spacetimes,
i.e. by proving the "oscillatory" (and possibly also the "vacuum") part
in a case where the model is already "local".

In Bianchi IX, there exist such rigorous convergence results by Lieb-
scher et al [27], Béguin [2], and Reiterer/Trubowitz [38]. For Bianchi
V I0 with a magnetic �eld as matter, there have been recent results by
Liebscher, Rendall and Tschapa [28].

Until today, there exist no rigorous convergence results for Bianchi
V I

∗

−1/9, which is of class B (see chapter ??, section ??). The reason for

this is that Bianchi V I
∗

−1/9 is more di�cult than Bianchi class A. One
example is that in Bianchi IX, the normal hyperbolicity of the Kasner
circle fails only at the three Taub points, while in Bianchi V I

∗

−1/9 this
is true for all of the six points that mark the borders of the sectors
of the Kasner circle de�ned in section 1. Also there are non-unique
heteroclinic chains because of multiple unstable eigenvalues for some
sectors of the Kasner circle, marked in red in the picture below. We
will discuss this matter further in chapter 2.

Σ+

Σ−

T1

T2

T3
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CHAPTER 2

Combined Linear Local Passage at the 18-cycle in

Bianchi V I
∗

−1/9

In this section, we show how some of the techniques developed in
the chapter before can be applied to Bianchi V I

∗

−1/9, where no rigor-
ous convergence result exists to date. We construct an example for a
periodic heteroclinic chain in Bianchi V I

∗

−1/9 that allows Takens Lin-
earization at all Base points. It will turn out to be a "18-cycle�, i.e.
involving a heteroclinic chain of 18 di�erent base points at the Kasner
circle. We then show that the combined linear local passage at the
18-cycle is a contraction. This quali�es it as a possible candidate for
proving a rigorous convergence theorem in Bianchi V I

∗

−1/9.

The situation in Bianchi V I
∗

−1/9 is more involved than in Bianchi
IX, as there are sectors of the Kasner circle with more than one unstable
eigenvalue (towards the big bang, the time direction we are interested
in). This means that even by starting with the same Kasner-parameter,
one can have di�erent realizations in terms of heteroclinic chains.

If we label the six sectors of the Kasner circle counter-clockwise as it
is often done in Bianchi models (starting in the positive quadrant), this
is true e.g. for sector 5, which is part of the 18-cycle. In the graphics
below, the sectors with multiple unstable eigenvalues are marked in red
color. The di�erent families of heteroclinic orbits in Bianchi V I

∗

−1/9 are

illustrated by the lines in light gray in the background (see chapter 1,
section 2 for details):

Σ+

Σ−

T1

T2

T3

Q1

Q2

Q3

2

5

13

4 6

12



We will illustrate this ambiguity that can arise from the same con-
tinued fraction development u = [3, 5, 3, 5, ...] by showing two possible
"18-cycles" (details are discussed in section 3.1):

• the �classic� 18-cycle, with sector sequence 54343-425-43434343-
425, where we go �left� to sector 4 both times in sector 5
• the �advanced� 18-cycle, with sequence 5634342-543434343425,
where we go �rst �right� to sector 6, and the second time �left�
to sector 4

The graphics below shows the "advanced 18 cycle" starting in sector
5. The bounces around the Taub-point can be seen clearly - the blue
color shows the part with 3 bounces, while the purple color exhibits 5
bounces. The label "advanced 18-cylce" means that we �rst follow the
blue part of the heteroclinic chain and then the purple one, re�ecting
our choice of u=[3,5,3,5,...].

Σ+

Σ−

T1

T2

T3

Now we are in a position to state the two main results of this
chapter:

Theorem 2.1. Both the classic and the advanced 18-cycle allow
Takens-Linearization at all base points.

Lemma 2.2. The Combined Linear Local Passage at the classic 18-
cycle is a contraction.

The proof of these results is the aim of this chapter, and we will
now comment a little on how the rest of chapter is organized.
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In order to illustrate our approach, we start by considering the 3-
cycle in Bianchi V I

∗

−1/9, as it is easier to handle and the method we
develop applies also to longer cycles.

First we derive the formulas for the relevant eigenvalues of the lin-
earized vector �eld at the base-points of the 3-cycle in Bianchi V I

∗

−1/9

in terms of the Kasner Parameter u. We then consider the Combined
Linear Local Passages and Takens Linearization at the 3-cycle. We
are able to show that the Sternberg Non-Resonance Conditions are not
satis�ed for the 3-cycle, but they are satis�ed for the 18-cycles.

This means that both the classic and the advanced 18-cycles are
periodic heteroclinic chains in Bianchi V I

∗

−1/9 that allow Takens Lin-
earization at all of their Base points. In addition, we give evidence that
the Combined Linear Local Passage at the classic 18-cycle is a contrac-
tion. This quali�es it as a candidate for proving a rigorous convergence
theorem in Bianchi V I

∗

−1/9.
In order to progress further and turn Lemma 2.2 into a rigorous

convergence theorem, a better understanding of the global passages in
Bianchi V I

∗

−1/9 is necessary. We will comment on possible ideas how
to do this in the section "Conclusion and Outlook".

As the formulas for the eigenvalues at points on the Kasner cir-
cle in Bianchi V I

∗

−1/9 depend on the sector, many cases have to be
checked. That's why we use Mathematica in order to do the necessary
computations for the 18-cycles (see Appendix 1).
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1. Eigenvalues in Terms of the Kasner Parameter u

1.1. General Formulas for Points on the Kasner Circle. At
�rst, we recall that in Bianchi IX, the formula for the eigenvalues of
the linearized vector �eld at points of the Kasner circle have an easy
expression in terms of the Kasner parameter u, compare section 1,
equation (5). In Bianchi IX, the situation in di�erent sectors of the
Kasner-circle only di�ers by a permutation of those 3 formulas for the
eigenvalues (see [17], p.8), which does not matter for the question of
resonances.

But in Bianchi V I
∗

−1/9, the situation is more complicated. Here, the
formulas for the eigenvalues at points on the Kasner circle do depend
on the sector, so in order to check for resonances, a lot of cases have to
be considered. Each sector corresponds to a permutation of the Kasner
expontents pi, where sector (321) means e.g. that p3 < p2 < p1which
�xes the formula for each of them. For this is it important to note that
u ∈ [1,∞]. As an example, consider the sector 5 or (312), compare
section 1):

p3 =
−u

1 + u+ u2

p1 =
(u+ 1)

1 + u+ u2

p2 =
u(u+ 1)

1 + u+ u2

The general formuals for the relevant eigenvalues (i.e. λ×, λ2, λ− cor-
responding to the variables involved in the heteroclinic chain: Σ×, Σ2,
N−, see section 2) in terms of Σ+,Σ−resp. the pi are (see [17], p.7):

Σ+ = −3

2
p1 +

1

2

Σ− = −
√

3

2
(p1 + 2p2 − 1)

λ× = −2
√

3Σ−

λ2 = −3Σ+ +
√

3Σ−

λ− = 2 + 2Σ+ + 2
√

3Σ−
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1.2. Eigenvalues at the 3-Cycle. In the following, we present
the formulas for the sectors that are involved in the 3-cycle with u =

golden mean = 1+
√

5
2

and the sector-sequence �5-1-2-5�. For the other
sectors, similar formulas can be derived analogously (see Appendix 1.2).

Base Point B1 in sector 5, i.e. (312).

λ2 =
3− 3u2

1 + u+ u2

λ× =
6u+ 3u2

1 + u+ u2

λ− =
−6u

1 + u+ u2

Base Point B2 in sector 1, i.e. (123).

λ2 =
−3− 6u

1 + u+ u2

λ× =
3− 3u2

1 + u+ u2

λ− =
6u+ 6u2

1 + u+ u2

Base Point B3 in sector 2, i.e. (213).

λ2 =
3 + 6u

1 + u+ u2

λ× =
−6u− 3u2

1 + u+ u2

λ− =
6u+ 6u2

1 + u+ u2
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2. The 3-Cycle in Bianchi V I
∗

−1/9

2.1. (Non-)Resonance and Takens Linearization. In this sec-
tion, we shortly check the Sternberg-Non-Resonance-Conditions (SNC)
for the 3-cycle in Bianchi V I

∗

−1/9. The procedure necessary to do this
is described in detail in section ??. The parameter-value at the 3-cylce

is u = g = 1+
√

5
2

, which satis�es

1 +
1

u
= u =⇒ 1 + u− u2 = 0

The equation for checking the (SNC) thus reads:

M ∗

 k1

k2

k3

 = z ∗

 1
1
−1


According to the formulas above, we observe that

MB1 =

 3 0 0
0 6 −6
-3 3 0

 ,MB2 =

 −3 3 0
−6 0 6
0 −3 6

 ,MB3 =

 3 0 0
6 −6 6
0 −3 6


, which are all invertible, and give the following results (with z = 6 for
the earliest possible resonance):

kB1 =

 2
0
−1

 , kB2 =

 −2
0
−1

 , kB3 =

 2
0
−1


This means that (SNC) does hold at the Base points of the 3-cycle

up to order 3, which is not enough to allow Takens-Linearization, as the
the order necessary in the Takens-Theorem, named α(1), is bigger than
10 in all of the sectors involved (see Appendix 1.1). That's why Takens
Linearization Theorem may not be employed at the base points of the
3-cycle, and we have to look for a di�erent (longer) cycle. Nevertheless,
we will stick to the 3-cycle in the following chapter in order to illustrate
our method for calculating the Combined Linear Local Passage, as the
method applies to longer cycles as well.
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2.2. Combined Linear Local Passages. In this section, we use
the linearized vector�eld at the base points of the 3-cycle to explicitly
compute the local passages as was done for Bianchi IX before (see
??-??). Be aware that Takens-Linearization is not allowed at the 3-
cycle in Bianchi V I

∗

−1/9, so this is only a formal calculation in this
case to illustrate what we mean by "Combined Local Linear Passage".
Later, for the 18-cycles, the calculation will be justi�ed as Takens-
Linearization is possible there.

The ratio of the relevant Eigenvalues at the Base-points B1,B2,B3

of the 3-cycle (corresponding to the value u = 1+
√

5
2

in the 3 sectors) is
given by the following:

Near B1 = (−1
4
,−
√

15
4

) :

r1 = −λ×
λn

=
u+ 2

2
= 1.8090 > 0

r2 = −λ2

λn
= −u

2 − 1

2u
= −0.5000 < 0

Near B2 = (1+3
√

5
8

,
√

15−
√

3
8

) :

r3 = −λn
λ2

=
2u(u+ 1)

2u+ 1
= 2 > 0

r4 = − λu
λuu

= −λ×
λ2

= −u
2 − 1

2u+ 1
= −0.3820 < 0

Near B3 = (−1
4
,
√

15
4

) :

r5 = − λ2

λ×
=

2u+ 1

u(u+ 2)
= 0.7236 > 0

r6 = −λn
λ×

=
2(u+ 1)

u+ 2
= 1.4472 > 0

We start our combined linear local passage at the In-Section of the
local passage at B1 in sector 5. Thus Σ× is the incoming variable and
we de�ne a := Σin

2 , b := N in
− (the two remaining relevant variables in

the section).
Then we do the calculations for the 3 local passages involved at the

3-cycle near the B1,B2 and B3 as in Bianchi IX before (see ??-??). We
arrive at the following formulas for the combined linear local passage
near the 3-cycle:
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ã = ([br2a]r4br1)r5

b̃ = ([br2a]r4br1)r6(br2a)r3

Taking Logarithms on both sides yields the following:

(
log ã

log b̃

)
= M3−cycle ∗

(
log a
log b

)

with the following matrix M3−cycle:

M3−cycle =

(
r5r4 r5r4r2 + r5r1

r6r4 + r3 r6r4r2 + r6r1 + r3r2

)
As mentioned before, Takens-Linearization is not allowed at the

3-cycle in Bianchi V I
∗

−1/9. However, for the 18-cycles, an analogous
calculation will be justi�ed as Takens-Linearization is possible there.
We will discuss the properties M18−cycle in order to prove Theorem 2.2
in section 3.5.
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3. The 18 Cycles in Bianchi V I
∗

−1/9

3.1. Possible Passages in Bianchi V I
∗

−1/9. When we look at the

di�erent transitions possible in Bianchi V I
∗

−1/9 (see chapter 1, section

2), we are able to understand which sequence of sectors can arise when
solutions converge to their corresponding heteroclinic chains. For the
classi�cation below, we have chosen to put our section always before
the next �Curvature Transition�, i.e. when we leave from sector 4 or 5,
that's why all the passages start and end in one of these sectors:

• Passage A: Sectors 4-3-4
• Passage B1: Sectors 4-2-5
• Passage B2: Sectors 4-2-5-4
• Passage C1: Sectors 5-1-2-5
• Passage C2: Sectors 5-1-2-5-4
• Passage D: Sectors 5-6-3-4
• Passage E: Sectors 5-1-6-3-4

For the 18-cycles discussed below, only a few of the passages will occur,
namely A, B1, B2 and D.

3.2. The Classic 18-Cycle. We now start with u=[3,5,3,5,...] in
Sector 4 and prescribe the follwing dynamics:

u= [3,5,...] [2,5,...] [2,5,...] [1,5,...] [1,5,...] [5,3,...] [5,3,...]
sector 4 3 4 3 4 2 5

u= [5,3,...] [4,3,...] [4,3,...] [3,3,...] [3,3,...] [2,3,...] [2,3,...]
sector 4 3 4 3 4 3 4

u= [1,3,...] [1,3,...] [3,5,...] [3,5,...] [3,5,...] ... ...
sector 3 4 2 5 4 ... ...

This means we have the following sequence of Passages: A A B2 A
A A A B2, and this pattern continues arbitrarily often. This involves
18 global passages, that's why I call it an "18-cycle�.

Observe that both 18-cycles mentioned in the introduction to this
chapter started in sector 5. This was done for illustrative purposes as
there is an ambiguity how to continue in this sector. From now on, we
refer to the �classic 18-cycle� with the sequence of sectors as illustrated
in the table above, which means we have started in sector 4.

Note that we could also derive a di�erent sequence of passages for
the same u, as we have a choice in sector 5 either to go to sector 4 via
a frame transition (as done above) or to go via curvature transition to
sector 6, as done at the �rst transition for the advanced 18-cycle in the
next section.
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3.3. The Advanced 18-Cycle. Now we start with u=[3,5,3,5,...]
in Sector 5 and prescribe the follwing dynamics:

u= [3,5,...] [2,5,...] [2,5,...] [2,5,...] [1,5,...] [1,5,...] [5,3,...]
sector 5 6 3 4 3 4 2

u= [5,3,...] [5,3,...] [4,3,...] [4,3,...] [3,3,...] [3,3,...] [2,3,...]
sector 5 4 3 4 3 4 3

u= [2,3,...] [1,3,...] [1,3,...] [3,5,...] [3,5,...] ... ...
sector 4 3 4 2 5 ... ...

This means we have the following sequence of passages: D A B2 A
A A A B1, which de�nes the "advanced 18-cycle".

3.4. (Non-)Resonance and Takens Linearization at the 18-
Cycle. We now show that both of the 18 cycles are in�nite periodic
heteroclinic chains in Bianchi V I

∗

−1/9 that allows Takens Lineariza-
tion at all of its base points. The Mathematica-output in Appendix
1.2 shows that for u = [3, 5, 3, 5, ...] the Sternberg-Non-Resonance-
Conditions (SNC) are satis�ed, because the α(1) that is necessary for
a C1-linearization at each point is always smaller than the sum of the
absolute value of the coe�cients in the vector k = {k1, k2, k3}. That's
why we can employ the Takens Linearization Theorem for both of the
18-cycles mentioned above, and Theorem 2.1 is proven.

3.5. Combined Linear Local Passage at the 18-Cycle. Our
Results from Mathematica (see Appendix 1.3) indicate that we get the
following matrix for the combined linear local passage of the classic
18-cycle when we apply the same algorithm that we outlined for the
3-cycle in section 2.2:

M18−cycle =

(
267.54 110.78
595.16 247.51

)
=:

(
v1 v2

v3 v4

)
µ1 = 514.49 with Eigenvector v1 = (0.45, 1)

µ2 = 0.5578 with Eigenvector v2 = (−0.41, 1)

This implies that if we start with small positive a,b (i.e. log a, log
b <�< 0), the combined linear local passage will bring us closer to the
origin - this is what we mean by the term "contraction" in Lemma 2.2.
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4. Numerical Simulation

The picture below shows a numerical simulation (with Matlab) of
a periodic heteroclinic chain in Bianchi V I

∗

−1/9, here a 13-cycle. Ac-
cording to the terminology developed above, it would be named the
"advanced" 13 cycle, as both directions are taken from sector 5.

Although a much more detailed numerical analysis is necessary, our
simulation shows that at least there are cases where both directions
are taken from sector 5. Thus this possibility seems to really occur in
the equations, at least numerically there are Bianchi V I

∗

−1/9-solutions
following the "advanced" 13 cycle towards the big bang.

Of course much more e�ort is needed in order to set up the numerics
in an appropriate way instead of just using a built-in Matlab ODE
solver1. One idea could be to use the explicit linear �ow near the
equilibria of the Kasner circle, where most of the time is spent, in
order to achieve a higher precision.

1for producing the picture above, we have used the "ode113" solver, which is
a variable order Adams-Bashforth-Moulton PECE solver (according to the Matlab
documentation [33]). We thank Woei Chet Lim for providing us with some Matlab
code that we used in order to carry out our numerical simulations.
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Summary

We have constructed, for the �st time, the 18-cycle as a relatively
simple example for a periodic heteroclinic chain in Bianchi V I

∗

−1/9 that
allows Takens Linearization at all Base points. In addition, we were
able to show that the Combined Linear Local Passage at the classic
18-cycle is a contraction. This could be seen as a �rst step for proving
a rigorous convergence theorem in Bianchi V I

∗

−1/9.
In order to progress further, a better understanding of the global

passages in Bianchi V I
∗

−1/9 is necessary. This is not an easy task, as
there are less invariant subspaces than in Bianchi IX that restrict the
signs of the heteroclinic orbits, so much more complicated transitions
are possible. A �rst step could be to check in detail which sequence
of signs for the di�erent transitions occurs numerically, leading to a
classi�cation of possible cases. Speculatively, one could think about
the possibility to prove a theorem that for heteroclinic chains with
periodic continued fraction developments and with a clearly de�ned
seqence of signs for the transitions there exist solutions of the Bianchi
V I

∗

−1/9 equations that show this behaviour. But this matter requires
further investigation.

Until now, the application of Dynamical Systems Techniques to
spatially homogeneous cosmological models yielding Ordinary Di�er-
ential Equations has been discussed. However, there has also been
the attempt to apply such techniques to inhomogeneous cosmologies,
yielding Partial Di�erential Equations. The reason is that in a way the
main point2 of the BKL-picture is the question of "locality", asking if

2let us again quote the recent survey paper by Uggla on this issue ([54],p.2):
"However, arguably the most central, and controversial, assumption of BKL is their
`locality' conjecture. According to BKL, asymptotic dynamics toward a generic
spacelike singularity in inhomogeneous cosmologies is `local,' in the sense that each
spatial point is assumed to evolve toward the singularity individually and indepen-
dently of its neighbors as a spatially homogeneous model"
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the "complicated" Einstein Equations that are PDEs3 can be approxi-
mated by "simpler/less complicated" ODEs towards the big bang. Un-
til today, mostly numerical and heuristic results exist in inhomogeneous
cosmologies, but very few rigorous mathematical theorems.

In the paper "The past attractor in inhomogeneous cosmologies"
([56]), it is outlined how it could be achieved to make the "local" part of
the BKL-picture more rigorous, compare also [18]. After some results
have been proven in the oscillatory spatially homogeneous setting of
Bianchi IX and in an inhomogeneous, but non-oscillatory setting of
Gowdy-spacetimes (see e.g. [41]), the logical next step seems to be to
consider inhomogeneous oscillatory cosmological models. Arguably the
simplest case is given by the G2-cosmologies, that's why it has received
rising attention in recent years ([11, 30, 32, 7]). However, there is not
a single rigorous convergence theorem comparable to the results that
could be achieved in spatially homogeneous models.

A particular complication in inhomogeneous models is the occur-
rence of spikes, i.e. the formation of spatial structure. Numerical ex-
periments support the conjecture that spikes form the non-local part of
the generalized Mixmaster attractor ([32]). Lim has also found explicit
spike solutions that are compatible with the usual Bianchi II - tran-
sitions, giving rise to a "non-local" version of the mimaster dynamics
involving "spike transitions" ([31]). Recent progress has been achieved
by Heinzle and Uggla, who report more in detail about the role of
the spike solutions as building blocks of such an extended non-local
mixmaster-dynamics ([19]). In addition, they have done a statistical
analysis on the spikes in G2-models ([20]).

A �rst step towards achieving rigorous results in inhomogeneous
oscillatory models could be to investigate the process of spike forma-
tion in G2-models. A good understanding of the underlying spatially
homogeneous model (which is Bianchi V I

∗

−1/9) is probably necessary
for this project, but as Uggla writes in his recent survey: "Unfortu-
nately, there exist no rigorous mathematical results concerning their
past asymptotic dynamics", refering to Bianchi V I

∗

−1/9 ([54], p.11).

3for General Relativity from the viewpoint of Partial Di�erential Equations see
[41, 43]
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1. Results on Non-Resonance-Conditions and CLLP for
Heteroclinic Cycles in Bianchi V I

∗

−1/9

1.1. Takens Linearization at the Base Points of the 3-Cycle.
For u=[m,a,a,...] and m=1...a with the following PARAMETERS:
a= 1, k= 1 (k=1 means smoothness is C1)

m= 1
Sektor 1 alpha= 22 beta= 3 k= 2,0,1
Sektor 2 alpha= 14 beta= 5 k= -2,0,1
Sektor 3 alpha= 9 beta= 3 k= 2,4,1
Sektor 4 alpha= 15 beta= 6 k= 2,0,1
Sektor 5 alpha= 16 beta= 3 k= -2,0,1
Sektor 6 alpha= 17 beta= 8 k= 2,4,1

1.2. Takens Linearization at the Base Points of the 18-
Cycle. We �rst give the coe�cient matricies for the eigenvalues in the
other sectors not part of the 3-cycle (see chapter 2, section 1.2):

MS3 =

 0 −3 6
6 −6 6
3 0 0

 ,MS4 =

 −3 3 0
0 6 −6
3 0 0

 ,MS6 =

 0 −3 6
−6 0 6
−3 3 0


For u=[m,a,b,a,b,...] and m=1...b with the following PARAMETERS:
a= 3 b= 5 k= 1 (k=1 means smoothness is C1)

m= 1
Sektor 1 alpha= 34 beta= 3 k= {-46,-80,-37}
Sektor 2 alpha= 11 beta= 4 k= {-34,-80,-37}
Sektor 3 alpha= 8 beta= 3 k= {6,-40,-37}
Sektor 4 alpha= 25 beta= 10 k= {6,-28,-37}
Sektor 5 alpha= 25 beta= 3 k= {-34,-28,-37}
Sektor 6 alpha= 30 beta= 14 k= {-46,-40,-37}
m= 2
Sektor 1 alpha= 15 beta= 3 k= {-46,-92,-43}
Sektor 2 alpha= 17 beta= 6 k= {-46,-92,-43}
Sektor 3 alpha= 13 beta= 4 k= {6,-40,-43}
Sektor 4 alpha= 10 beta= 4 k= {6,-40,-43}
Sektor 5 alpha= 11 beta= 3 k= {-46,-40,-43}
Sektor 6 alpha= 10 beta= 5 k= {-46,-40,-43}
m= 3
Sektor 1 alpha= 16 beta= 3 k= {-34,-80,-37}
Sektor 2 alpha= 22 beta= 8 k= {-46,-80,-37}
Sektor 3 alpha= 15 beta= 4 k= {6,-28,-37}
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Sektor 4 alpha= 12 beta= 4 k= {6,-40,-37}
Sektor 5 alpha= 13 beta= 3 k= {-46,-40,-37}
Sektor 6 alpha= 9 beta= 5 k= {-34,-28,-37}
m= 4
Sektor 1 alpha= 20 beta= 3 k= {-10,-44,-19}
Sektor 2 alpha= 26 beta= 9 k= {-34,-44,-19}
Sektor 3 alpha= 21 beta= 5 k= {6,-4,-19}
Sektor 4 alpha= 14 beta= 4 k= {6,-28,-19}
Sektor 5 alpha= 15 beta= 3 k= {-34,-28,-19}
Sektor 6 alpha= 11 beta= 6 k= {-10,-4,-19}
m= 5
Sektor 1 alpha= 23 beta= 3 k= {26,16,11}
Sektor 2 alpha= 31 beta= 11 k= {-10,16,11}
Sektor 3 alpha= 23 beta= 5 k= {6,32,11}
Sektor 4 alpha= 19 beta= 5 k= {6,-4,11}
Sektor 5 alpha= 17 beta= 3 k= {-10,-4,11}
Sektor 6 alpha= 13 beta= 7 k= {26,32,11}

For u=[m,b,a,b,a,...] and m=1...a with the following
PARAMETERS: a= 3 b= 5 k= 1 (k=1 means smoothness is C1)

m= 1
Sektor 1 alpha= 50 beta= 3 k= {-26,-52,-21}
Sektor 2 alpha= 11 beta= 4 k= {-26,-52,-21}
Sektor 3 alpha= 11 beta= 4 k= {10,-16,-21}
Sektor 4 alpha= 38 beta= 15 k= {10,-16,-21}
Sektor 5 alpha= 37 beta= 3 k= {-26,-16,-21}
Sektor 6 alpha= 47 beta= 21 k= {-26,-16,-21}
m= 2
Sektor 1 alpha= 16 beta= 3 k= {-6,-32,-11}
Sektor 2 alpha= 17 beta= 6 k= {-26,-32,-11}
Sektor 3 alpha= 12 beta= 4 k= {10,4,-11}
Sektor 4 alpha= 10 beta= 4 k= {10,-16,-11}
Sektor 5 alpha= 12 beta= 3 k= {-26,-16,-11}
Sektor 6 alpha= 12 beta= 6 k= {-6,4,-11}
m= 3
Sektor 1 alpha= 16 beta= 3 k= {34,28,19}
Sektor 2 alpha= 20 beta= 7 k= {-6,28,19}
Sektor 3 alpha= 14 beta= 4 k= {10,44,19}
Sektor 4 alpha= 11 beta= 4 k= {10,4,19}
Sektor 5 alpha= 13 beta= 3 k= {-6,4,19}
Sektor 6 alpha= 9 beta= 5 k= {34,44,19}
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1.3. CLLP for the Classic 18-Cycle. The classic 18-cycle has
the sector sequence 4343-425-43434343-425, i.e. we start in sector 4
with u=[3,5,3,5,...] which is around 3.18819:

Sector 4, u= 3.18819
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.5418 lt= 1.91557 ln= -1.33278 la= 0.209019
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -2.02211 lt= 3.44689 ln= 2.39822 la= 0.37611
The Eigenvalues are {1.4570,1.0000}
The Eigenvectors are {{0.167325,1.0000},{0,1.0000}}

Sector 4, u= 2.18819
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 2.02211 lt= 1.42478 ln= -1.646 la= 0.37611
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -2.81366 lt= 3.15683 ln= 3.64699 la= 0.833333
The Eigenvalues are {1.8416,1.0000}
The Eigenvectors are {{0.62500,1.0000},{0,1.0000}}

Sector 4, u= 1.18819
Passage B2: GP from Sector 4 to 2.In sector 4,the eigenvalues are:
lc= 2.81366 lt= 0.343171 ln= -1.98032 la= 0.833333
Passage B2: GP from Sector 2 to 5.In sector 2,the eigenvalues are:
lc= -3.37457 lt= 1.00965 ln= 5.82633 la= 2.45176
Passage B2: tGP from Sector 5 to 4.In sector 5,the eigenvalues are:
lc= 3.37457 lt= -2.36492 ln= -0.922814 la= 2.45176
The Eigenvalues are {3.1761,-1.9879}
The Eigenvectors are {{1.01227,1.0000},{-0.239459,1.0000}}

Sector 4, u= 5.31366
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.00965 lt= 2.36492 ln= -0.922814 la= 0.0868342
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -1.20737 lt= 3.41557 ln= 1.33278 la= 0.125411
The Eigenvalues are {1.2318,1.0000}
The Eigenvectors are {{0.045618,1.0000},{0,1.0000}}

Sector 4, u= 4.31366
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.20737 lt= 2.2082 ln= -1.08196 la= 0.125411
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
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lc= -1.49614 lt= 3.45384 ln= 1.6923 la= 0.196156
The Eigenvalues are {1.3018,1.0000}
The Eigenvectors are {{0.075222,1.0000},{0,1.0000}}

Sector 4, u= 3.31366
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.49614 lt= 1.9577 ln= -1.29998 la= 0.196156
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -1.94792 lt= 3.45473 ln= 2.29407 la= 0.346154
The Eigenvalues are {1.4322,1.0000}
The Eigenvectors are {{0.150000,1.0000},{0,1.0000}}

Sector 4, u= 2.31366
Passage A: GP from Sector 4 to 3. In sector 4, the eigenvalues are:
lc= 1.94792 lt= 1.50681 ln= -1.60176 la= 0.346154
Passage A: GP from Sector 3 to 4. In sector 3, the eigenvalues are:
lc= -2.69398 lt= 3.23295 ln= 3.43668 la= 0.742693
The Eigenvalues are {1.7612,1.0000}
The Eigenvectors are {{0.49035,1.0000},{0,1.0000}}

Sector 4, u= 1.31366
Passage B2: GP from Sector 4 to 2.In sector 4, the eigenvalues are:
lc= 2.69398 lt= 0.538969 ln= -1.95129 la= 0.742693
Passage B2: GP from Sector 2 to 5.In sector 2, the eigenvalues are:
lc= -3.45737 lt= 1.5418 ln= 5.58196 la= 2.12459
Passage B2: GP from Sector 5 to 4.In sector 5, the eigenvalues are:
lc= 3.45737 lt= -1.91557 ln= -1.33278 la= 2.12459
The Eigenvalues are {2.8062,-1.4925}
The Eigenvectors are {{2.03045,1.0000},{-0.262732,1.0000}}

Sector 4, u= 3.18819
The Eigenvalues are {514.49,0.55783}
The Eigenvectors are {{0.448591,1.0000},{-0.414926,1.0000}}
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